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Pressure tensor and heat flux vector for inhomogeneous nonequilibrium fluids under the influenc
of three-body forces

Junfang Zhang and B. D. Todd*
Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn Victoria 3122, Australia

~Received 11 September 2003; published 31 March 2004!

We present a derivation of the pressure tensor and heat flux vector for inhomogeneous fluids under the
influence of three-body forces. The derivation is based on the method of planes formalism of Todd, Evans, and
Daivis @Phys. Rev. E52, 1627 ~1995!; 51, 4362 ~1995!#. Our derivation is validated against nonequilibrium
molecular dynamics simulations of a confined fluid acted upon by a two-body Barker-Fisher-Watts force
coupled with the Axilrod-Teller three-body force. Our method of planes calculations agree perfectly with the
equivalent mesoscopic route of integrating the momentum and energy continuity equations directly from the
simulation data. Our calculations reveal that three-body forces have an important consequence for the isotropic
pressure, but have negligible influence on the shear stress~hence viscosity! and heat flux vector~hence thermal
conductivity! for a confined simple fluid.
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I. INTRODUCTION

Practical implementations of the theory and compu
tional methods of statistical mechanics have never been m
sought after, due mainly to rapid developments in na
science and their technological offshoots. These applicat
range from the transport of natural gas through zeol
through to the operation and dynamics of protein moto
While many of these applications are relevant to equilibri
situations, there is a growing interest in applying the pr
ciples of nonequilibrium statistical mechanics to molecu
fluids under flow conditions. Simulations of shear-induc
flow by homogeneous nonequilibrium molecular dynam
~NEMD! methods are now well established and routine, w
particular technological relevance to lubrication and polym
processing@1–5#. Over the past decade interest has a
grown in the application of inhomogeneous NEMD tec
niques to fluids confined at the nanoscale@6–10#. For non-
equilibrium environments one is interested in not only t
standard thermodynamic and structural information relev
to equilibrium fluids, but also their transport propertie
namely the transport of mass, momentum and energy.

The first simulation of planar Couette flow by inhomog
neous NEMD methods~i.e., atomic fluid confined betwee
atomistic walls moving at constant and opposite velocit
with respect to each other!, was performed by Liemet al.
@11#. Their simulations showed that in the limit of large wa
spacing, inhomogeneous and homogeneous NEMD meth
were consistent with each other. A problem still remained
the formal application of nonequilibrium statistical mecha
ics to compute the stress tensor and heat flux vector.
homogeneous flows the standard Irving-Kirkwood proced
@12# is well suited, but for strongly inhomogeneous flow
~e.g., fluids confined by structured walls on the nanoscale! it
cannot be used. This was clearly demonstrated by Toddet al.
@13,14# to be a consequence of the differential operatorOi j
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that results from an expansion of the difference ofd func-
tions specifying atomic positions. For homogeneous flu
this operator is unity and poses no complication: the resu
the standard Irving-Kirkwood formulas for the pressure te
sor and heat flux vector. The operator is not unity for inh
mogeneous fluids, and while it is possible to obtain ex
expressions of the position-dependent momentum and en
fluxes by this route@15# it is an involved computation.

In Refs.@13#, @14# it was demonstrated how a formulatio
of the Irving-Kirkwood procedure in reciprocal space cou
greatly simplify the calculation of momentum and ener
fluxes. This formulation, known as the ‘‘method of plane
~MOP!, is valid for systems with planar geometry and flo
in one direction. While the original papers were devoted
formally deriving nonequilibrium statistical mechanical e
pressions for the pressure tensor and heat flux vector
pairwise additive potentials, it was later shown@16# how the
method may be generalized to compute any other relev
property exactly, such as the position-dependent den
temperature and streaming velocity.

The method of planes formalism demonstrated that
Irving-Kirkwood gauge is a direct and natural consequen
of solving for the microscopic momentum and energy flux
via the hydrodynamic continuity equations formulated in
ciprocal space. No heuristic assumptions were made a
pressure being the ‘‘force across unit area;’’ rather it is
natural consequence of the formalism. Since these der
tions were published there have been a number of stu
that have used the methodology in practical simulations
equilibrium and nonequilibrium fluids, e.g., Refs.@17#, @18#,
as well as more theoretical papers addressing the vague
of the definition of the pressure tensor, e.g., Ref.@19#. The
method has been used for confined alkanes@20#, polymers
@21#, the computation of elastic constants in thin films@22#,
and has recently been formulated for flows in cylindric
geometry@23#.

In this paper we extend the method of planes formali
one step further, by formally deriving expressions for t
pressure tensor and heat flux vector for fluids under the
fluence of three-body forces. We test our theoretical exp
©2004 The American Physical Society11-1
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sions by applying them to simulations of a confined atom
fluid under the influence of gravity driven flow. The flui
interacts with itself and the walls by a combination of
two-body Barker-Fisher-Watts potential@24# and a three-
body Axilrod-Teller potential@25#. Our MOP calculations for
the pressure tensor and heat flux vector are validated ag
equivalent calculations involving direct integration of th
momentum and energy continuity equations~the so-called
IMC and IEC methods@13,14#! and are in excellent agree
ment. Our simulations demonstrate that the inclusion
three-body forces has a significant influence on the isotro
pressure, in agreement with previously reported results
homogeneous NEMD simulations of three-body fluids@26#.
However, for simple fluids the transport of momentum a
energy is largely dependent only on the two-body potent
This agrees with previously reported results that indica
the three-body potential only contributes about 3% of
total shear viscosity@27#.

II. THEORY

In the derivations that follow we designate the two-bo
and three-body force contributions to the total interatom
force asFi

(2) andFi
(3) , respectively.Fi j

(3) is defined here to be
the contribution to the total three-body force on atomi due to
atom j . If f i j

(2)5f (2)(r i ,r j ) is the two-body potential and
f i jk

(3)5f (3)(r i ,r j ,r k) is the three-body potential, then

Fi
(2)[(

j
Fi j

(2)52(
j

S ]f i j
(2)

]r i
D , ~1!

Fi
(3)[(

jk
~Fi j

(3)1Fik
(3)!

52F(
jk

H S ]f i jk
(3)

]r i j
D 1S ]f i jk

(3)

]r ik
D J G ~r i j [r i2r j !,

~2!

Fi j
(3)[2

]f i jk
(3)

]r i j
. ~3!

The geometry of our system is planar and is shown sc
matically in Fig. 1. A three-dimensional fluid is confine
between planar parallel walls separated by lengthLy in they
direction. A constant field drives the system away from eq
librium and is directed in thex direction. Thus, all thermo-
dynamic and transport properties are functions of onlyy.

A. Pressure tensor

The method of planes derivation of the pressure ten
follows closely the original derivation in Ref.@13#. Briefly,
the method involves defining the microscopic expressions
the mass and momentum densities, then Fourier transform
and integrating over thex, z directions~as physical proper-
ties are assumed uniform inx, z). One also takes the Fourie
transform of the momentum continuity equation, substitu
in the microscopick-space momentum flux and solves f
thek-space pressure tensor. Finally one performs the inv
Fourier transform to recover ther -space pressure tensor.
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In k space the spatially average momentum density is@13#

Ja~ky!5
1

A (
i

mva ie
ikyyi, ~4!

whereA is the area of thex-z surface that has its normal i
the y direction.m and va i are the mass and laboratory v
locity of particle i , respectively, anda5x, y, z. Similarly,
the k-space momentum continuity equation is

]Ja~ky!

]t
5 iky@Pay~ky!1F$r~y!ua~y!uy~y!%#, ~5!

whereF$ % denotes the Fourier transform of the quantity
brackets andu is the streaming velocity of the fluid. Subst
tuting Eq.~4! into Eq. ~5!, isolating the pressure tensor, an
finally inverse transforming gives the kinetic (K) and poten-
tial (U) contributions to the pressure tensor as

Pay
K ~y!5

1

A (
i

pa i pyi

m
d~yi2y! ~6!

and

Pay
U ~y!5

1

2A (
i

Fa i sgn~yi2y!, ~7!

wherepa i and pyi are peculiar~i.e., thermal! momenta, and
Fa i is thea component of the total force on atomi ~i.e., it
includes both two- and three-body contributions!. The deri-
vation up to this point is identical to the original derivatio
and the reader should refer to Ref.@13# for further details. It
illustrates that Eqs.~6! and ~7! are actually completely gen
eral for this type of planar symmetry and is valid forn-body
forces. In what follows we specifically consider the case
three-body forces and use symmetry relations to genera
useful expression for the potential contribution to the thr
body pressure. The kinetic contribution remains unchan

FIG. 1. Planar geometry of the flow for a confined fluid und
the influence of an external field. Thez axis is normal to the page
1-2
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PRESSURE TENSOR AND HEAT FLUX VECTOR FOR . . . PHYSICAL REVIEW E69, 031111 ~2004!
as it implicitly contains the full two-plus three-body forc
contributions in the particle momenta.

We now separate out the two- and three-body contri
tions to the pressure

Pay
U ~y!5

1

2A (
i

Fa i sgn~yi2y!

5
1

2A (
i

~Fa i
(2)1Fa i

(3)!sgn~yi2y!

5Pay
(2)U~y!1Pay

(3)U~y!, ~8!

where Pay
(2)U(y) and Pay

(3)U(y) are contributions from two-
body and three-body forces, respectively. In Ref.@13# it was
shown that

Pay
(2)U~y!5

1

2A (
i

Fa i
(2) sgn~yi2y!

5
1

4A F(
i j

Fa i j
(2) sgn~yi2y!

1(
i j

Fa j i
(2) sgn~yj2y!G

5
1

4A H(
i j

Fa i j
(2)@sgn~yi2y!2sgn~yj2y!#J

5
1

2A (
i j

Fa i j
(2)@Q~yi2y!Q~y2yj !

2Q~yj2y!Q~y2yi !#, ~9!

whereQ is the Heaviside step function.
Making similar use of particle exchange symmetry, t

three-body contribution to the pressure tensor can be
pressed as

Pay
(3)U(y)5

1

2A (
i

Fa i
(3) sgn(yi2y)

5
1

6AF(
i

Fa i
(3) sgn(yi2y)1(

j
Fa j

(3) sgn(yj2y)

1(
k

Fak
(3) sgn(yk2y)G . ~10!

Substitution of Eq.~2! into Eq. ~10! yields

Pay
(3)U~y!5

1

6A F(
i j

Fa i j
(3) sgn~yi2y!1(

ik
Fa ik

(3) sgn~yi2y!

1(
j i

Fa j i
(3) sgn~yj2y!1(

jk
Fa jk

(3) sgn~yj2y!

1(
ki

Faki
(3) sgn~yk2y!1(

k j
Fak j

(3) sgn~yk2y!G

03111
-

x-

5
1

6A H(
i j

Fa i j
(3)@sgn~yi2y!2sgn~yj2y!#

1(
ik

Fa ik
(3) @sgn~yi2y!2sgn~yk2y!#

1(
jk

Fa jk
(3) @sgn~yj2y!2sgn~yk2y!#J ~11a!

5
1

3A H(
i j

Fa i j
(3)@Q~yi2y!Q~y2yj !2Q~yj2y!Q~y2yi !#

1(
ik

Fa ik
(3) @Q~yi2y!Q~y2yk!2Q~yk2y!Q~y2yi !#

1(
jk

Fa jk
(3) @Q~yj2y!Q~y2yk!2Q~yk2y!Q~y2yj !#J .

~11b!

Equation~11! demonstrates that the potential contribution
the three-body pressure at a plane located aty occurs when
components of the three-body force intersect that plane
complete analogy with the two-body force contributions. F
example, consider the situation shown in Fig. 2, in which
triangular configuration of three particles is shown. Only t
force contributions along the vectorsr12 andr13 intersect the
plane aty5y0 and contribute to the three-body pressure
this plane.

Finally, in a molecular dynamics simulation the full pre
sure tensor is computed by time averaging over the sim
tion phase space trajectory. In the case of the potential c
tributions this time averaging is straightforward. In Ref.@13#

FIG. 2. Triangular configuration of atoms and the plane loca
at y5y0 . Contributions to the pressure tensor are included fr
atoms 1, 2, and 3 along the vectorsr12 and r13.
1-3
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it was shown that the time averaged kinetic component of
pressure tensor can be usefully expressed as

^Pay
K ~y!&5 lim

t→`

1

At (
0,t i ,m,t

(
i

pa i~ t i ,m!sgn@pyi~ t i ,m!#.

~12!

Here it is noted that particlei crosses the plane aty at a set
of times (t i ,m ; i 51,...,N;m51,2,...).

B. Heat flux vector

As with the pressure tensor derivation, we follow t
method of planes formalism developed in Ref.@14# for the
heat flux vector. That approach uses the microscopic de
tions of the local energy density and the Fourier transform
the energy continuity equation to obtain ak-space expression
for the heat flux vector, which is again back transformed i
r -space.
3 i jk

03111
e

i-
f

o

We start the derivation at the Fourier transformed ene
density continuity equation@14#

]

]t
re~k,t !5 ik•@Jq~k,t !1F$reu%1F$P•u%#. ~13!

If pi is defined here as the laboratory momentum of atomi ,
then the total energy of atomi is

ei5
pi

2

2m
1

1

2 (
j

f i j
(2)1

1

3 (
jk

f i jk
(3) . ~14!

Noting that reu(k,t)5( ieiu(r i ,t)eik•r i and re(k,t)
5( ieie

ik•r i @14#, we first compute the time derivative of th
energy density
]re~k,t !

]t
5 ik•S (

i
vieie

ik•r i D 1(
i

mvi• v̇ie
ik•r i1

1

2 (
i j

S ṙ i•
]f i j

(2)

]r i
1 ṙ j•

]f i j
(2)

]r j
Deik•r i1

1

3 (
i jk

S ṙ i•
]f i jk

(3)

]r i
1 ṙ j•

]f i jk
(3)

]r j

1 ṙ k•
]f i jk

(3)

]r k
Deik•r i5 ik•S (

i
vieie

ik•r i D 1(
i

vi•~Fi
(2)1Fi

(3)!eik•r i2
1

2 (
i j

~vi•Fi j
(2)1vj•Fj i

(2)!eik•r i

1
1

3 (
i jk

S ṙ i•
]f i jk

(3)

]r i
1 ṙ j•

]f i jk
(3)

]r j
1 ṙ k•

]f i jk
(3)

]r k
Deik•r i5 ik•S (

i
vieie

ik•r i D 1
1

2 (
i j

vi•Fi j
(2)~eik•r i2eik•r j !

1(
i

vi•Fi
(3)eik•r i1

1

3 (
i jk

S ṙ i•
]f i jk

(3)

]r i
1 ṙ j•

]f i jk
(3)

]r j
1 ṙ k•

]f i jk
(3)

]r k
Deik•r i. ~15!

Consider now the two terms containing the three-body forces. The first term may be symmetrized as

(
i

vi•Fi
(3)eik•r i5

1

3 F(
i

vi•Fi
(3)eik•r i1(

j
vj•Fj

(3)eik•r j1(
k

vk•Fk
(3)eik•rkG

5
1

3 F(
i jk

vi•~Fi j
(3)1Fik

(3)!eik•r i1(
i jk

vj•~Fj i
(3)1Fjk

(3)!eik•r j1(
i jk

vk•~Fki
(3)1Fk j

(3)!eik•rkG . ~16!

The second term containing three-body forces in Eq.~15! may be similarly expanded:

1

3 (
i jk

S ṙ i•
]f i jk

(3)

]r i
1 ṙ j•

]f i jk
(3)

]r j
1 ṙ k•

]f i jk
(3)

]r k
Deik•r i5

1

3 (
i jk

Fvi•S ]f i jk
(3)

]r i j
1

]f i jk
(3)

]r ik
D 1vj•S ]f i jk

(3)

]r j i
1

]f i jk
(3)

]r jk
D 1vk•S ]f i jk

(3)

]r ki

1
]f i jk

(3)

]r k j
D Geik•r i

52
1

3 (
i jk

~vi•Fi j
(3)1vi•Fik

(3)2vj•Fi j
(3)1vj•Fjk

(3)2vk•Fik
(3)2vk•Fjk

(3)!eik•r i.

~17!

Defining S(3) as the sum of Eqs.~16! and ~17! gives

S(3)5
1
( @vj•Fi j

(3)~eik•r i2eik•r j !2vj•Fjk
(3)~eik•r i2eik•r j !1vk•Fik

(3)~eik•r i2eik•rk!1vk•Fjk
(3)~eik•r i2eik•rk!#. ~18!
1-4
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We now permute the triplet indices in Eq.~18! such that all
velocities are in terms of the indexi to obtain

S(3)5
1

3 (
i jk

vi•@Fik
(3)1Fi j

(3)#~eik•r i2eik•rk!1
1

3 (
i jk

vi•@Fi j
(3)

1Fik
(3)#~eik•r i2eik•r j !5

1

3 (
ik

vi•Fi
(3)~eik•r i2eik•rk!

1
1

3 (
i j

vi•Fi
(3)~eik•r i2eik•r j ! ~19!

Substituting Eq.~19! back into Eq.~15! gives

]re~k,t !

]t
5 ik•S (

i
vieie

ik•r i D 1
1

2 (
i j

vi•Fi j
(2)~eik•r i2eik•r j !

1
1

3 (
ik

vi•Fi
(3)~eik•r i2eik•rk!

1
1

3 (
i j

vi•Fi
(3)~eik•r i2eik•r j !. ~20!

Substitution of Eq.~20! into the Fourier transformed energ
continuity equation@i.e., Eq.~13!# yields

ik•Jq~k,t !5 ik•S (
i

@vi2u~r i ,t !#eie
ik•r i D

1
1

2 (
i j

vi•Fi j
(2)~eik•r i2eik•r j !

1
1

3 (
i j

vi•Fi
(3)~eik•r i2eik•r j !

1
1

3 (
ik

vi•Fi
(3)~eik•r i2eik•rk!2 ik•F$P•u%.

~21!

Integrating overx and z, dividing by iky and taking the
inverse Fourier transform yields

AJqy~y,t !5(
i

~vyi2uy!eid~y2yi !

2
1

4 (
i j

vi•Fi j
(2)@sgn~y2yi !2sgn~y2yj !#

2
1

6 (
i j

vi•Fi
(3)@sgn~y2yi !2sgn~y2yj !#

2
1

6 (
ik

vi•Fi
(3)@sgn~y2yi !2sgn~y2yk!#

2A$P•u%y . ~22!

To complete the derivation, we substitute the MOP expr
sion for the pressure tensor, Eq.~11a!, into Eq. ~22! to give
the kinetic and potential contributions to the heat flux vec
03111
s-

r

Jqy~y,t !5Jqy
K ~y,t !1Jqy

U ~y,t !. ~23!

The kinetic contribution is, as with the pressure tensor, id
tical in form to the original MOP derivation in Ref.@14#:

Jqy
K ~y,t !5

1

A (
i

@vyi2u~y!#Uid~y2yi ! ~24!

except that hereUi is the internal energy of a particle define
as

Ui5
1

2
m@vi2u~yi !#

21
1

2 (
j

f i j
(2)1

1

3 (
jk

f i jk
(3) . ~25!

The potential contribution to the heat flux vector is

Jqy
U ~y,t !52

1

4A (
i j

@vi2u~y!#•Fi j
(2)@sgn~y2yi !

2sgn~y2yj !#2
1

6A (
i j

@vi2u~y!#•Fi j
(3)

3@sgn~y2yi !2sgn~y2yj !#

2
1

6A (
ik

@vi2u~y!#•Fik
(3)

3@sgn~y2yi !2sgn~y2yk!#2
1

6A (
i jk

vi•Fi j
(3)

3@sgn~y2yi !2sgn~y2yk!#2
1

6A (
i jk

vi•Fik
(3)

3@sgn~y2yi !2sgn~y2yj !#1
1

6A (
jk

u~y!•Fjk
(3)

3@sgn~y2yj !2sgn~y2yk!#. ~26!

An alternative, more concise form of Eq.~26!, may be de-
rived by substituting the unsymmetrised form of the press
tensor@i.e., Eq.~8!# into Eq.~22!. This is demonstrated in the
Appendix and the result is quoted here as

Jqy
U ~y,t !52

1

2A (
i

@vi2u~y!#•Fi
(2) sgn~y2yi !

2
1

2A (
i

@vi2u~y!#•Fi
(3) sgn~y2yi !

1
1

6A (
i jk

vi•Fi
(3)@sgn~y2yi !1sgn~y2yj !

1sgn~y2yk!#. ~27!

The last three terms in Eq.~26! and the last term in Eq
~27! are not direct analogies of the two-body heat flux, unli
the case in the pressure tensor three-body expressions, w
are direct analogies. They are a result of particle veloci
coupling to three-body forces, which does not occur in
pressure tensor calculation. However, it will be shown
1-5
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Sec. IV that these additional terms are negligible, if not ze
As was the case for the kinetic term for the pressure ten
the kinetic term for the heat flux vector in Eq.~24! can be
written in a more useful way for computer simulation as@14#

Jqy
K ~y!5 lim

t→`

1

At (
0,t i ,m,t

Ui sgn@cyi~ t i ,m!#, ~28!

whereci[vi2u(y) is the plane peculiar velocity of atomi .

III. SIMULATIONS

A. Two- and three-body potentials

Our simulations are performed on fluid and solid ato
that interact via the Barker-Fisher-Watts two-body poten
@24# and Axilrod-Teller three-body potential@25#. The total
intermolecular potential~f! is a contribution from two-body
interactions (f (2)) and three-body dispersion interactio
(f (3)):

f~r !5f (2)~r !1f (3)~r !. ~29!

The two-body interaction of argon is well represented by
Barker-Fisher-Watts~BFW! potential@24#. The BFW poten-
tial is a linear combination of the Barker-Pompe@28# (fBP)
and Bobetic-Barker@29# (fBB) potentials

f (2)~r !50.75fBB~r !10.25fBP~r !, ~30!

where the potentials of Barker-Pompe and Bobetic-Bar
have the following form:

f (2)~r !5«F(
i 50

5

Ai~x21! i exp@a~12x!#2(
j 50

2
C2 j 16

d1x2 j 16G .

~31!

Here,x5r /r m where r m is the intermolecular separation
which the potential has a minimum value and the other
rameters are listed in Table I.

The triple-dipole Axilrod-Teller~AT! potential@25# is

f (3)~r i ,r j ,r k!5
vDDD~113 cosu i cosu j cosuk!

~r i j r ikr jk!3 , ~32!

where vDDD is the nonadditive coefficient, and the angl
and intermolecular separations refer to a triangular confi
ration of atoms. The nonadditive coefficient for argon
518.3 a.u.@30#. Recent work@31# has demonstrated that th
Axilrod-Teller term can significantly improve the predictio
of liquid phase properties.

B. Geometry and equations of motion

The geometry of our simulation cell is shown in Fig.
An atomic fluid is confined between atomistic walls as d
picted. Our geometry is such thaty50 defines the center o
the fluid channel. A field~e.g., gravity! representing a con
stant pressure head drives the fluid and is directed in thx
direction. Each wall is three atomic layers thick, and t
second wall is just the periodic image of the first. The en
03111
.
r,

s
l

e

r

-

-

-

e

cell is thus periodic inx, y, and z. The total number of
atoms isN5324, which includes 270 liquid atoms and 5
wall atoms (Nw518 atoms per layer!. In what follows all
quantities are expressed in reduced units. The density of
fluid is 0.44 and the wall density is 0.84. The cell dimensio
areLx55.0565,Ly527.5143,Lz55.0565. The thickness o
the walls isDyw52.5143. We use the same method in R
@13# to approximate the accessible width of the fluid chann
which gives an effective pore width ofl y524.0871. A cutoff
potential radius ofLx/252.5282 was used for the two-bod
force calculation, whereas a value ofLx/451.2641 was used
for the three-body force. These were optimal values, ba
upon the work performed in Ref.@31#. In our simulations we
used a truncated and shifted version of the BFW and
potentials, so that long-range corrections need not be con
ered. In this way the potential is zero at and beyond
cutoff value. We justify this as our goal is to verify the MO
expressions derived in Sec. II for the pressure tensor and
flux vector, rather than to accurately reproduce experime
results.

The equations of motion used to simulate wall and flu
atoms were developed in Ref.@13# and quoted here as fol
lows, modified for three-body forces. We note that wall
oms interact via the two plus three body forces in addition
a harmonic spring force that tethers them together. For
wall particles,

ṙ i5
pi

m

ṗi52K~r i2qi !1Fi
(2)1Fi

(3)2api2 jlLn
, i PLn .

~33!

K is the spring force constant and was set to 57.15 in
simulations.qi is the equilibrium ‘‘frozen’’ lattice position of

TABLE I. Parameters for the Barker-Fisher-Watts potential.

Argon
«/k(K) 142.095
s(A) 3.3605
r m(A) 3.7612

Barker-Pompe Bobetic-Barker
«/k(K) 147.70 140.235
r m(A) 3.7560 3.7630
s(A) 3.341 3.3666
A0 0.2349 0.29214
A1 24.7735 24.41458
A2 210.2194 27.70182
A3 25.2905 231.9293
A4 0.0 2136.026
A5 0.0 2151.00
C6 1.0698 1.11976
C8 0.1642 0.171551
C10 0.0132 0.013748
a 12.5 12.5
d 0.01 0.01
1-6
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atom i . r i is the laboratory position of atomi and pi here
refers to the laboratory momentum of atomi . As the walls
are not under the influence of a gravitational force
streaming velocity is zero and the peculiar~thermal! and
laboratory momenta are equivalent.j is the unit vector in the
y direction and the layer multiplierlLn

ensures that the cen
ter of mass of each wall layer stays fixed, where the ind
n51, 2, 3, refers to the wall layer. This is important othe
wise the walls separate as the fluid heats up under flow.a is
a thermostat multiplier used to keep the temperature of
walls fixed ~in our simulations the wall temperature wa
fixed at 0.722!. The layer multiplier and thermostat are com
puted as

lLn
5

j

Nw
(

i PLn

Nw

@2K~r i2qi !1Fi
(2)1Fi

(3)#, ~34!

where

(
Ln51

3

(
i PLn

Nw

153Nw

and

a5
( i PL

3Nw$@2K~r i2qi !1Fi
(2)1Fi

(3)2 jlLn
#•pi%

( i PL
3Nwpi

2 . ~35!

HereL5$L1 ,L2 ,L3%.
The fluid atoms obey Newton’s equations of motion

ṙ i5
pi

m

ṗi5Fi
(2)1Fi

(3)1 iFe , ~36!

whereFe is the external driving field andi is the unit vector
in thex direction and we again note thatr i andpi refer to the
laboratory position and momentum of atomi , respectively.
In our simulations the field strength used wasFe50.2.

The equations of motion were solved with a fifth ord
Gear predictor-corrector scheme with an integration ti
step oft50.001. Our simulations were first run for a total
106 time steps to reach a nonequilibrium steady state. O
steady state was achieved, production runs of a total of7

time steps were run with averages accumulated in block
50 000 time steps. The errors presented in our plots repre
the standard error in the mean.

In our simulations we do not assume any functional fo
for the streaming velocity. Rather, we first run a steady-s
simulation of;106 time steps and compute a time-averag
velocity profile at planes, using the procedure developed
Ref. @16#. These plane velocity values are then used as
streaming velocityux(y) in MOP calculations of the pressur
tensor and heat flux vector in all subsequent production ru

Finally, we note that a total of 200 planes were used in
MOP calculations, though not all planes data are plotted
the figures presented in this work for clarity of visualizatio
For further details of the simulation methodology, readers
referred to Refs.@13#, @14#, @16#.
03111
e

x

e

e

ce
0
of
ent

te
d
in
e

s.
e
n

.
re

IV. RESULTS AND DISCUSSION

In Figs. 3 and 4 we plot the density and streaming vel
ity profiles, respectively. The streaming velocity is seen to
well represented by a symmetric quadratic function iny, in
conformity with hydrodynamics@13#. Only near the walls
does the streaming velocity deviate from quadratic behav
It is well known that hydrodynamics breaks down at smal
channel widths@32#.

In Fig. 5 we plot MOP calculations ofPyy , they compo-
nent of the pressure in the direction normal to the wall s
face, for both the BFW fluid and the BFW fluid with th
inclusion of the AT three body forces. For mechanical stab
ity Pyy must be constant throughout the channel, and thi
indeed seen to be the case. Also shown is the pressure

FIG. 3. Number density profile for the fluid system.

FIG. 4. Streaming velocity profile~circle data points! for the
fluid. Superimposed~solid curve! is a symmetric quadratic fit, in
conformity with hydrodynamic prediction. Error bars are the size
the plotting symbol.
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J. ZHANG AND B. D. TODD PHYSICAL REVIEW E69, 031111 ~2004!
culated on the system walls. This is computed from the to
y component of the force per unit area exerted on the w
atoms by fluid atoms on one side of the wall. We see per
agreement between wall and fluidPyy values, as expected
Clearly the addition of the three-body force significantly a
fects the pressurePyy . Neglecting to include three-bod
forces overestimates the pressure by almost 11%.

Of greater interest to us is the shear stress (2Pxy). In Fig.
6~a! we plot Pxy as a function ofy for the BFW and BFW
1AT fluids. We show the results of our MOP calculatio
and compare them with direct integration of the moment
continuity equation~the IMC method of Ref.@13#, given as
Pxy(y)5Fe*0

ydy8n(y8), wheren(y) is the number density!.
Error bars are of the order of the size of the plotting symbo
We find excellent agreement between both methods, dem
strating that the MOP calculations are correct. The value
Pxy calculated at the walls is also included and seen to
consistent with both the MOP and IMC values. Note that
stress deviates from the linear hydrodynamics predic
close to the walls, as is to be expected for such an inho
geneous system. From Fig. 6~a! it is clear that three-body
forces have negligible effect on the shear stress. This is s
more clearly in Fig. 6~b!, in which the region between 5.
<y<6.1 is magnified. This is consistent with the observ
tions reported in Ref.@27# that showed that three-body force
only affected the shear viscosity by approximately 3%. T
precise degree of influence is likely to depend on tempe
ture and density, and to a lesser degree the number of at
so we do not say anything conclusive at this stage. We
note that our potentials are shifted and truncated and inc
no long-range corrections.

In Fig. 7~a! we plot the heat flux vector as a function ofy
for the BFW and BFW1AT fluids. Classical hydrodynamic
predicts a cubic heat flux profile. We again show the res
of our MOP calculations and compare them with direct in
gration of the energy continuity equation@the IEC method of

FIG. 5. Pyy as a function ofy for the BFW and BFW1AT
fluids. The pressure is computed by the method of planes. A
shown is the pressure at the walls.
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Ref. @14# given asJqy(y)52*0
ydy8Pxy(y8)ġ(y8), whereġ

is the strain rate,ġ5]ux(y)/]y]. Error bars are of the orde
of plotting symbol sizes. Once again, excellent agreemen
found between both methods, confirming the validity of t
MOP expressions. For a channel this size it is clear that
classical cubic heat flux profile is obeyed. The value of
heat flux at the walls was also computed by noting that
Gaussian thermostat acting on the walls removes heat
rate of

Q̇~ t !5a~ t !(
i 51

N pi
2

m
. ~37!

The heat flux at the walls is therefore

^Jqy~y5ywall!&5
1

A
^Kwa&, ~38!

o

FIG. 6. ~a! Pxy as a function ofy for the BFW and BFW1AT
fluids. Pxy computed by the MOP and IMC methods are shown,
well asPxy computed at the walls.~b! As with ~a! but magnified in
the range 5.7<y<6.1.
1-8
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PRESSURE TENSOR AND HEAT FLUX VECTOR FOR . . . PHYSICAL REVIEW E69, 031111 ~2004!
where Kw is the kinetic energy of the wall atoms and th
angle brackets indicate a time average@14#. The heat flux at
the walls is in excellent agreement with the MOP and IE
values at the wall-fluid interface.

We again observe that the presence of three-body fo
has very little influence in the transportation of energy acr
the channel. In Fig. 7~b! the region between 4.0<y<7.0 is
magnified. Three-body forces contribute a very small but
ticeable effect on the heat flux, slightly increasing its mag
tude. Again, this effect is likely to be temperature and den
dependent and we refrain from specific conclusions at
stage. What is import for our purposes is the excellent ag
ment between the MOP and IEC methods, clearly visible
this figure.

Finally, in Fig. 8 we plot several contributions to th
three-body component of the heat flux vector. Term
~circles! represents the second and third terms in Eq.~26!.
These terms are the direct three-body analogy of the t

FIG. 7. ~a! Heat flux vectorJqy(y) as a function ofy for the
BFW and BFW1AT fluids. Jqy(y) computed by the MOP and IEC
methods are shown, as well asJqy(y) computed at the walls.~b! As
with ~a! but magnified in the range 4.0<y<7.0.
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body contribution to the heat flux vector. Term 2~diamonds!
represents the additional last three terms in Eq.~26!. It is
clear that these last three terms are negligible, if not zer

V. CONCLUSIONS

In this paper we have derived method of planes expr
sions for the pressure tensor and heat flux vector for a fl
under the influence of three-body forces. Our derivatio
have been validated against numerical simulations of gra
driven flow by nonequilibrium molecular dynamics method
The MOP calculations are in excellent agreement with in
pendent calculations based upon direct integration of the
drodynamic momentum and energy continuity equatio
Our results show that the isotropic pressure is sensitive to
presence of three-body forces, whereas the shear stres
heat flux vector seem to be largely independent of the
Further work is required to study the temperature and den
dependence on the relative magnitudes of the two to th
body force contributions. While such effects are clearly sm
for noble gas fluids such as argon, they will most likely pl
a significant and important role for heavier atomic and m
lecular fluids and liquid metals. It is hoped that our MO
expressions will be useful for the study of such liquids in t
future.
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FIG. 8. Individual terms of the three-body contribution to th
heat flux vector. Term 1 represents the second and third terms o
~26! and is the direct analogy of the two-body contribution to t
heat flux vector. Term 2 represents the last three terms in Eq.~26!.
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APPENDIX

An alternative form of Eq.~26! may be obtained by using
the alternative~unsymmetrised! form of the pressure tenso
in Eq. ~8!, i.e.,

Pay
U(3)~y,t !52

1

2A (
i

Fa i
(3) sgn~y2yi !. ~A1!

Substituting Eq.~A1! into Eq. ~22! gives

AJqy~y,t !5(
i

~vyi2uy!eid~y2yi !2
1

4 (
i j

vi•Fi j
(2)

3@sgn~y2yi !2sgn~y2yj !#2
2

6 (
i

vi•Fi
(3)

3sgn~y2yi !1
1

6 (
ik

vi•Fi
(3) sgn~y2yk!

1
1

6 (
i j

vi•Fi
(3) sgn~y2yj !1

3

6 (
i

u•Fi
(3)

3sgn~y2yi !. ~A2!

The-three body potential contribution can be isolated as
03111
Jqy
U(3)~y,t !52

3

6A (
i

vi•Fi
(3) sgn~y2yi !

1
1

6A (
i

vi•Fi
(3) sgn~y2yi !

1
1

6A (
ik

vi•Fi
(3) sgn~y2yk!

1
1

6A (
i j

vi•Fi
(3) sgn~y2yj !

1
3

6A (
i

u•Fi
(3) sgn~y2yi !

52
1

2A (
i

@vi2u~y!#•Fi
(3) sgn~y2yi !

1
1

6A (
i jk

vi•Fi
(3)@sgn~y2yi !1sgn~y2yj !

1sgn~y2yk!#. ~A3!

To prove that Eq.~A3! @i.e., three-body contribution to Eq
~27!# is identical to the three-body contribution of Eq.~26!,
let us expand Eq.~A3!:
Jqy
U(3)~y,t !52

1

2A (
i

@vi2u~y!#•Fi
(3) sgn~y2yi !1

1

6A (
i jk

vi•Fi
(3)@sgn~y2yi !1sgn~y2yj !1sgn~y2yk!#

52
1

2A (
i

vi•Fi
(3) sgn~y2yi !1

1

2A (
i

u•Fi
(3) sgn~y2yi !

1
1

6A (
i jk

vi•Fi
(3)@sgn~y2yi !1sgn~y2yj !1sgn~y2yk!#

52
1

2A (
i

vi•Fi
(3) sgn~y2yi !1

1

6A
u•(

i jk
$Fi

(3) sgn~y2yi !1Fj
(3) sgn~y2yj !1Fk

(3) sgn~y2yk!%

1
1

6A (
i jk

vi•Fi
(3)@sgn~y2yi !1sgn~y2yj !1sgn~y2yk!#

52
3

6A (
i

vi•Fi
(3) sgn~y2yi !1

1

6A
u•5

(
i j

Fi j
(3)@sgn~y2yi !2sgn~y2yj !#1

(
ik

Fik
(3)@sgn~y2yi !2sgn~y2yk!#1

(
jk

Fjk
(3)@sgn~y2yj !2sgn~y2yk!#

6
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1
1

6A (
i jk

vi•~Fi j
(3)1Fik

(3)!sgn~y2yi !1
1

6A (
i jk

vi•~Fi j
(3)1Fik

(3)!

3sgn~y2yj !1
1

6A (
i jk

vi•~Fi j
(3)1Fik

(3)!sgn~y2yk!

52
1

6A (
i j

@vi2u~y!#•Fi j
(3)@sgn~y2yi !2sgn~y2yj !#2

1

6A (
ik

@vi2u~y!#•Fik
(3)@sgn~y2yi !2sgn~y

2yk!#2
1

6A (
i jk

vi•Fi j
(3)@sgn~y2yi !2sgn~y2yk!#2

1

6A (
i jk

vi•Fik
(3)@sgn~y2yi !2sgn~y2yj !#

1
1

6A (
jk

u~y!•Fjk
(3)@sgn~y2yj !2sgn~y2yk!#. ~A4!

Equation~A4! is just the three-body contribution to Eq.~26!, as required.
n

n
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